Deamidation of Protonated Asparagine–Valine Investigated by a Combined Spectroscopic, Guided Ion Beam, and Theoretical Study

نویسندگان

  • L J M Kempkes
  • G C Boles
  • J Martens
  • G Berden
  • P B Armentrout
  • J Oomens
چکیده

Peptide deamidation of asparaginyl residues is a spontaneous post-translational modification that is believed to play a role in aging and several diseases. It is also a well-known small-molecule loss channel in the MS/MS spectra of protonated peptides. Here we investigate the deamidation reaction, as well as other decomposition pathways, of the protonated dipeptide asparagine-valine ([AsnVal + H]+) upon low-energy activation in a mass spectrometer. Using a combination of infrared ion spectroscopy, guided ion beam tandem mass spectrometry, and theoretical calculations, we have been able to identify product ion structures and determine the energetics and mechanisms for decomposition. Deamidation proceeds via ammonia loss from the asparagine side chain, initiated by a nucleophilic attack of the peptide bond oxygen on the γ-carbon of the Asn side chain. This leads to the formation of a furanone ring containing product ion characterized by a threshold energy of 129 ± 5 kJ/mol (15 kJ/mol higher in energy than dehydration of [AsnVal + H]+, the lowest energy dissociation channel available to the system). Competing formation of a succinimide ring containing product, as has been observed for protonated asparagine-glycine ([AsnGly + H]+) and asparagine-alanine ([AsnAla + H]+), was not observed here. Quantum-chemical modeling of the reaction pathways confirms these subtle differences in dissociation behavior. Measured reaction thresholds are in agreement with predicted theoretical reaction energies computed at several levels of theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deamidation Reactions of Asparagine- and Glutamine-Containing Dipeptides Investigated by Ion Spectroscopy

Deamidation is a major fragmentation channel upon activation by collision induced dissociation (CID) for protonated peptides containing glutamine (Gln) and asparagine (Asn) residues. Here, we investigate these NH3-loss reactions for four Asn- and Gln-containing protonated peptides in terms of the resulting product ion structures using infrared ion spectroscopy with the free electron laser FELIX...

متن کامل

Deamidation reactions of protonated asparagine and glutamine investigated by ion spectroscopy.

RATIONALE Deamidation of Asn and Gln residues is a primary route for spontaneous post-translational protein modification. Several structures have been proposed for the deamidation products of the protonated amino acids. Here we verify these structures by ion spectroscopy, as well as the structures of parallel and sequential fragmentation products. METHODS Infrared ion spectroscopy using the f...

متن کامل

A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.

The rates of deamidation reactions of asparagine (Asn) residues which occur spontaneously and nonenzymatically in peptides and proteins via the succinimide intermediate are known to be strongly dependent on the nature of the following residue on the carboxyl side (Xxx). The formation of the succinimide intermediate is by far the fastest when Xxx is glycine (Gly), the smallest amino acid residue...

متن کامل

Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain

The Asn-Gly-Arg (NGR) motif and its deamidation product isoAsp-Gly-Arg (isoDGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding isoDGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a s...

متن کامل

IRMPD spectroscopy shows that AGG forms an oxazolone b2+ ion.

Infrared multiple photon dissociation (IRMPD) spectroscopy combined with theoretical vibrational spectra provides a powerful tool for probing structure. This technique has been used to probe the structure of protonated cyclic AG and the b(2)(+) ion from AGG. The experimental spectrum for protonated cyclo AG compares very well with the theoretical spectra for a diketopiperazine. The spectrum cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2018